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Stable neutral Fermi ball
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A Fermi ball is a kind of nontopological soliton with fermions trapped in its domain wall, and has been
suggested to arise from the spontaneous symmetry breaking of the approximateZ2 symmetry in the early
universe. We find that the neutral thin-wall Fermi ball is stable in the limited region of the scalar self-coupling
constantl and the Yukawa coupling constantG. We find that the Fermi ball is stabilized due to the curvature
effect of the domain wall caused by the fermion sector. We also discuss whether such a stable Fermi ball may
contribute to cold dark matter.
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I. INTRODUCTION

In quantum field theory and especially in the cosmolo
cal context, various models have been discussed where
spontaneous breaking of a discrete symmetry produces
main walls@1,2#. If the symmetry is approximate and broke
spontaneously in the history of the expanding universe,
false vacuum regions shrink due to the energy density dif
ence@3# and this process is accelerated by the surface
sion. The shrinking will stop before collapsing if there ex
zero mode solutions for the fermions bound in such dom
walls @4,5# and the Fermi pressure of such fermions becom
comparable to the shrinking force due to the surface ten
and the volume energy. These objects, a kind of nontopol
cal soliton, are called Fermi balls@6# and are introduced as
candidate for cold dark matter@6,7#. They were also sug
gested in the baryon-separation scenario with the QCD
ergy scale@8#. However, the stability of the Fermi ball
which should be essential to be a candidate for cold d
matter has not been fully examined.

We consider in the present paper the stability of the th
wall Fermi balls against the fragmentation. If the Fermi b
is electrically neutral and the thickness of the walldb is
negligibly small, as was first proposed@6#, its energy is not
changed by the fragmentation in the absence of the volu
energy@9#. In this case, we express the stability as ‘‘ma
ginal,’’ since we cannot tell within this approximatio
whether or not the Fermi ball is stable against the fragm
tation. Since the stability of the Fermi ball is marginal, t
correction due to the finite thickness determines the stab
even though this correction is much smaller than the lead
order energy. In the previous paper@11#, we estimated the
corrections caused by the finitedb effect in the case when th
thickness of the fermion distributiond f is negligibly small in
comparison withdb . We found that the neutral Fermi ball i
unstable in this case,db@d f . In the present paper, we con
sider the case whered f cannot be neglected. In order t
estimate the corrections caused by the finited f effect, we use
0556-2821/2003/67~12!/123518~9!/$20.00 67 1235
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the perturbation approximation expanding the scalar fieldf,
the fermion fieldc, and the static energy of the Fermi ballE
in the power ofdb /R. ~Notice that we here use the pertu
bation with respect todb /R and not to the coupling con
stants.! We examine the stability of the Fermi ball against t
fragmentation at each level of the perturbation.

The contents of the present paper are organized as
lows: We first explain the neutral Fermi ball model to clari
terminologies and the method of energy estimation in Sec
We next examine the stability of the Fermi ball within th
leading~zeroth! order ofdb /R perturbation but with finited f
in Sec. III, and regain the result obtained in the previo
works in the limitd f→0 @6#. The effect of the finited f in the
higher order corrections ofdb /R perturbation is investigated
in Sec. IV. We discuss constraints on the Fermi ball para
eters including the volume energy from the experimen
viewpoint in Sec. V. We summarize the obtained results
Sec. VI.

II. METHOD FOR ESTIMATING FERMI BALL ENERGY

We consider the simple model with the Lagrangian de
sity,

L5
1

2
~]mf!21C̄~ igm]m2Gf!C2U~f!, ~1!

where the scalar potentialU(f) is approximately double-
well shaped,

U~f!5
l

8
~f22v2!21D~f!. ~2!

Here, the first term has theZ2 symmetry underf↔2f, and
the second term violates the symmetry though it is assum
to be much smaller than the first one,L.uD(v)2D(2v)u
!lv4. SupposingD(2v).D(v), we call the region with
f5v and that withf52v as the true vacuum and the fals
©2003 The American Physical Society18-1
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vacuum, respectively. In the following, we neglect the s
ond term except for the explicit discussion in Sec. VI. T
Fermi ball is the ground state of the system with the to
number of fermions being fixed:

Nf5E d3xC†C. ~3!

The classical fieldsf(xW ,t) and C(xW ,t) for the Fermi ball
extremize

L@f,C;e f #5E d3xL1e f S E d3xC†C2Nf D , ~4!

with e f the Lagrange multiplier. The static fields thus satis

~aW pW 1Gfb!C5e fC, ~5!

2¹W 2f1GC†bC1
l

2
f~f22v2!50, ~6!

whereaW 5g0gW , b5g0, andpW 52 i¹W .
Assuming the spherical symmetry off(xW ), we take it as a

function of the radial coordinater. We first consider Eq.~5!.
Let C(xW ) be the eigenfunction ofJ¢2, Jz andP:

J¢2CJ
M5J~J11!CJ

M , JzCJ
M5MCJ

M ,

PCJ
M5bC~2xW !5PCJ

M . ~7!

Then,CJ
M is written as

CJ
M~xW !5

1

r S f ~r !Y lJ
M~u,w!

g~r !Yl 8J
M

~u,w!
D , ~8!

where Y lJ
M(u,w) and Y l 8J

M (u,w) are the spherical spinor
having the eigenvaluesJ5 l 2v/25 l 81v/2 and M,
with v561. We take Y l 8J

M
5(sW xW /r )Y lJ

M and note
P5(21)l5(21)J1v/2. Substituting Eq.~8! into Eq.~5!, we
get

Gf f 1S pr2 i
K

r Dg5e f f

S pr1 i
K

r D f 2Gfg5e fg, ~9!

wherepr52 i (d/dr ) and K5v(J11/2). The equation~9!
is compactly written in terms ofc(r )[( f g)T:
12351
-

l

H fc5e fc, ~10!

with

H f5s1pr1s2

K

r
1s3Gf. ~11!

The radial coordinater is hereafter replaced byw5r 2R.
We next consider Eq.~6!. Noting C̄C5(KMC̄M

J CM
J

5(1/4pr 2)(K(2uKu)c†s3c, we have

d2f

dw2
1

2

R1w

df

dw

5
l

2
f~f22v2!1

G

4p~R1w!2 (
K

~2uKu!c†s3c.

~12!

The energy of the Fermi ball is expressed in terms off and
c as follows:

E5Ef1Eb , ~13!

whereEf is the Fermi energy,

Ef5E d3xC†~aW pW 1Gfb!C5(
KM

E
2`

1`

dwc†H fc,

~14!

andEb is the surface energy@12#,

Eb5E d3xH 1

2
~¹W f!21

l

8
~f22v2!2J

54pR2E
2`

1`

dwS 11
w

RD 2H 1

2 S df

dwD 2

1
l

8
~f22v2!2J .

~15!

Note that we estimate the energy by integrating the ab
integrands not from2R but from 2`, since most of the
contribution comes from the region near the surface and
error due to this approximation is exponentially sm
(}e2constvR).

III. LEADING ORDER OF db ÕR PERTURBATION

Let us expand the fields,

f5f01f11•••,

c5c01c11•••, ~16!

and the Hamiltonian,

H f5H01H11H21•••, ~17!
8-2



g
tu
-

r

y,
all

o-

r

ing

-

as-
de

nst
rgy.
ball

STABLE NEUTRAL FERMI BALL PHYSICAL REVIEW D 67, 123518 ~2003!
H05s1pr1s2

K

R
1s3Gf0 , ~18!

H152s2

K

R2
w1s3Gf1 , ~19!

H25s2

K

R3
w2, ~20!

in the power ofdb /R @we need the expressions~13!–~15! in
the power ofdb /R up to the leading and the next-to-leadin
order#. We should keep in mind that we here use the per
bation with respect todb /R and not to the coupling con
stants. We also expandE5( iEi , Ef5( iEf

( i ) , Eb5( iEb
( i ) ,

ande f5( ie i . We obtain Eqs.~10! and~12! for the fields in
the leading order,

H0c05e0c0 , ~21!

d2f0

dw2
5

l

2
f0~f0

22v2!1
G

4pR2 (
KM

c0
†s3c0 . ~22!

We first solve Eq.~21!. Taking into account thatf0
(6`)→6v, we obtain the normalizable solution

c0~w!5
1

ANe2U0(w)x1 , ~23!

with U0(w)5G*0
wdw8f0(w8) and the normalization facto

N5*2`
1`dwe22U0(w). Here,x6 are eigenspinors ofs2 satis-

fying s2x656x6 and x6
† x651. We obtain the energy

eigenvalue

e05
K

R
, ~24!

and take onlye0 positive, i.e.,v51. Using Eq.~23!, we
obtain the leading order Fermi energy,

Ef
(0)5(

KM
E

2`

1`

dwc0
†H0c05(

KM

K

R
5

1

R (
K51

Kmax

K~2K !

5
Kmax~Kmax11!~2Kmax11!

3R
. ~25!

Here,Kmax is determined by the total fermion number,

(
KM

E
2`

1`

dwc0
†c05 (

K51

Kmax

2K5Kmax~Kmax11!5Nf .

~26!
12351
r-

From Eqs.~25! and ~26!, we get

Ef
(0)5

2Nf
3/2

3R S 11
1

4Nf
D 1/2

.
2Nf

3/2

3R
1

Nf
1/2

12R
for Nf@1.

~27!

The first term is the leading contribution to the fermi energ
which is the same as that obtained within the exact thin-w
approximation@6#. The second term in Eq.~27! is the cor-
rection caused by the effect of quantumizing the angular m
mentum, which we callDEf for the later discussion.

We next consider Eq.~22!. Since the leading solution fo
the fermion satisfiesc0

†s3c050, Eq. ~22! becomes

d2f0

dw2
5

l

2
f0~f0

22v2!. ~28!

We know that the solution to the above equation satisfy
f0(6`)→6v is a kink,

f0~w!5v tanh
w

db
, ~29!

with db52/(Alv). Using Eq. ~29!, we obtain the leading
order surface energy,

Eb
(0)54pR2E

2`

1`

dwH 1

2 S df0

dw D 2

1
l

8
~f0

22v2!2J 54pR2S,

~30!

with S52Alv3/3. This also coincides with the result ob
tained in Ref.@6# within the thin-wall approximation.

Combining Eq.~30! with the first term in Eq.~27!, we get
the leading order Fermi ball energy,

E05
2Nf

3/2

3R
14pR2S. ~31!

~Note that we neglect the false vacuum volume energy,
suming that it is negligibly small. We discuss its magnitu
in the cosmological context in Sec. VI.! Minimizing Eq. ~31!
with respect toR, we get

R5
ANf

~12pS!1/3
5

ANf

~8p!1/3l1/6v
, ~32!

which yields

E05~8p!1/3l1/6Nfv. ~33!

Here, let us examine the stability of the Fermi ball agai
the fragmentation using the leading order Fermi ball ene
We compare two states: the one in which a single Fermi
has the fermion numberNf and the other in whichn Fermi
8-3
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balls have the fermion numbers less thanNf but keep the
total fermion number to beNf . Since the energy of the
Fermi ball in the leading order approximation is proportion
to the total fermion number, the two states have the sa
energy. The leading order estimation cannot tell whether
Fermi balls with largeNf produced in the early univers
survive until now or not@13#. In order to examine the stabil
ity of the Fermi ball, we calculate the higher order corre
tions in E in the next section.

IV. HIGHER ORDER CORRECTION
OF db ÕR PERTURBATION

The next-to-leading order components of the fields sat

S H02
K

RDc152~H12e1!c052H1c0 , ~34!

FIG. 1. Thes2511 ~a! and s2521 ~b! component of the
next-to-leading order solution for the fermion field with the Yukaw
coupling constantG51. In the figures,c6 and w are rescaled as
ANfc6 andw/db , respectively, whereNf is the total fermion num-
ber of the Fermi ball anddb is the domain wall thickness. Th
origin of thew axis denotes the center of the domain wall.~a! shows
that c1 is getting more centrally localized around the origin as
scalar self-coupling constantl decreases.~b! shows that the width
of c2 around the origin decreases with the decreasingl.
12351
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d2f1

dw2
2

l

2
~3f0

22v2!f1

52
2

R

df0

dw
1

G

4pR2 (
KM

~c0
†s3c11c1

†s3c0!.

~35!

We here note

e15E
2`

1`

dwc0
†H1c05

1

NE
2`

1`

dwwe22U0(w)50. ~36!

In order to solve Eq.~34!, we first writec1 in the follow-
ing form:

c1~w!5
1

AN $j1~w!c (a)~w!1j2~w!c (b)~w!%, ~37!

wherec (a)(w) andc (b)(w) are the linearly independent so
lutions to Eq.~21! with the same eigenvaluee0,

c (a)~w!5e2U0(w)x1 ~38!

c (b)~w!5
K

R
e2U0(w)W~w!x11

1

2
eU0(w)x2 , ~39!

with W(w)5*0
wdw8e2U0(w8). Equations~34! and ~37! give

dj1

dw
1

K

R
W~w!

dj2

dw
50, ~40!

FIG. 2. The next-to-leading order solutionf1 for the domain

wall field f. In the figure, f1 and w are rescaled asAlf̃1

[AlRf1 and w/db , respectively. Here,l is the scalar self-
coupling constant andR and db are the Fermi ball radius and th
wall thickness, respectively. The origin of thew axis denotes the
center of the domain wall. The figure shows thatf1 is not smooth
at the origin in the limit ofl→0, which coincides with the case
where the spreading width of the fermionic source term in Eq.~35!
is neglected~see Ref.@11#!.
8-4
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dj2

dw
1

2K

R2
we22U0(w)50. ~41!

The solutions to the above equations are

j1~w!5
2K2

R3 E0

w

dw8w8W~w8!e22U0(w8)2U1~w!, ~42!

j2~w!5
2K

R2 Ew

1`

dw8w8e22U0(w8), ~43!

with U1(w)5G*0
w dw8f1(w8). We thus obtain the solution

for c1,

c1~w!5
1

AN ~c1~w!x11c2~w!x2!, ~44!

where

c1~w!5e2U0S 2K2

R3 E0

w

dw8e2U0E
w8

`

dw9w9e22U0

2U1~w!D , ~45!

c2~w!5
K

R2
eU0E

w

1`

dw8w8e22U0. ~46!

The w dependence of the componentc6 is shown in Fig. 1.
We next solve Eq.~35!. Replacing the fermionic sourc

term of Eq.~35! by c0
†s3c15c1

†s3c05j2 /(2N ), we get
12351
F d2

dw2
2

l

2
~3f0

22v2!G f̃1522
df0

dw
1

G

4pRN (
KM

j2

[h~w!, ~47!

wheref̃15Rf1. The solution to the above equation is give
by

f̃1~w!5
1

cosh2
w

db

E
0

w

dw8cosh4
w8

db

3H E
0

w8
2E

0

`J dw9
h~w9!

cosh2
w9

db

5
1

cosh2
w

db

E
0

w

dw8cosh4
w8

db
E

0

w8
dw9

h~w9!

cosh2
w9

db

~48!

where we use

E
0

`

dw
h~w!

cosh2
w

db

}E
0

`

dw
df0

dw
h~w!50. ~49!

Note thatf̃1(w) satisfiesf̃1(0)50 and f̃1(6`)→0 ~see
Fig. 2!.

We note that the first order energy correctionsEf
(1) and

Eb
(1) vanish since the integrands for them are odd functio

of w. In the next-to-leading order, the Fermi energy is
Ef
(2)5(

KM
E

2`

1`

dwc0
†H2c01(

KM
E

2`

1`

dwc0
†H1c1

.
2Nf

3/2

3R3NE
2`

1`

dww2e22U01
4GNf

3/2

3R3N E
2`

1`

dwwe22U0E
0

w

dw8f̃1~w8!2
4Nf

5/2

5R5NE
2`

1`

dwwe22U0E
0

w

dw8e2U0

3E
w8

1`

dw9w9e22U0 for Nf@1

5
16pl1/2v3

3N E
2`

1`

dww2e22U01
32pl1/2Gv3

3N E
2`

1`

dwwe22U0E
0

w

dw8f̃1~w8!

2
128p5/3l5/6v5

5N E
2`

1`

dwwe22U0E
0

w

dw8e2U0E
w8

1`

dw9w9e22U0, ~50!

and the surface energy is
8-5



OGURE, YOSHIDA, AND ARAFUNE PHYSICAL REVIEW D67, 123518 ~2003!
Eb
(2)54pR2E

2`

1`

dw
w2

R2 H 1

2 S df0

dw D 2

1
l

8
~f0

22v2!2J 14pR2E
2`

1`

dw
2w

R H df0

dw

df1

dw
1

l

2
f0f1~f0

22v2!J
14pR2E

2`

1`

dwH 1

2 S df1

dw D 2

1
l

4
f1

2~3f0
22v2!J

54pE
2`

1`

dwH w2S df0

dw D 2

22f̃1

df0

dw
2

1

2
f̃1

h~w!

R J
54pE

2`

1`

dwH w2S df0

dw D 2

2f̃1

df0

dw J 2
G

2RN (
KM

E
2`

1`

dwf̃1j2

5plv4E
2`

1`

dw
w2

cosh4
w

db

22pl1/2v2E
2`

1`

dw
f̃1~w!

cosh2
w

db

2
16pl1/2Gv3

3N E
2`

1`

dwwe22U0E
0

w

dw8f̃1~w8!, ~51!
e
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whereR is replaced by Eq.~32!. Taking into account Eq.~32!
andDEf , the second term in the right-hand side of Eq.~27!,
we obtain the Fermi ball energy in the next-to-leading ord

E25Ef
(2)1Eb

(2)1DEf5C~l,G!v. ~52!

We see thatC(l,G) does not depend onNf ; this is crucial to
the discussion on the stability of the Fermi ball below. Let
consider a single-Fermi ball state and ann-Fermi balls state
both with the total fermion number taken to beNf . The two
states have the same leading-order energiesE0, while they
have different higher-order correctionsE2: the former has a
correctionCv and the latternCv. Therefore, whenC is posi-
tive, the former state has the lower energy and the Fermi
is stable against the fragmentation. We evaluateE2 numeri-
cally and find thatC(l,G) is positive in a limited paramete
region ofl andG ~see Fig. 3!. We see in Fig. 3 that a rathe
large value ofG is allowed for the Fermi ball to be stable
This situation, however, is much changed if the fermio
have more degrees of freedom, e.g., belonging to a la
multiplet of the internal symmetry and if the scalar fieldf
belongs to a singlet~see@24#!. Consider the fermion multip-
let C i(1< i<n) coupling tof through the common Yukawa
coupling constantG, and assume for simplicity the fermio
numberNi5N in common for each flavori. In such a case
we see that the energy correctionE2 is independent ofN but
depends onn, and that a smaller value ofG can stabilize the
Fermi ball ~see Fig. 4!. Here, we emphasize that there is
certain region of the parameters where stable Fermi balls
allowed to exist.

In this section, we consider the higher order correction
db /R-perturbationE2 in Eq. ~52!. It determines the stability
of the Fermi ball even thoughE2!E0, since the energyE0
(}N) in Eq. ~33! shows the stability is marginal in the lead
ing order. In contrast to the case in Ref.@11# where d f
!db , we find there is a parameter region ofE2.0 due to
the finite-d f correction. SinceE2 in Eq. ~52! is independent
of N, the condition ofE2.0 is required for the Fermi ball to
12351
r,

s

ll

s
e

re

f

be stable. Since we use the perturbation with respect todb /R
and not to the coupling constants, we see our conclusio
valid for db!R.

V. COSMOLOGICAL OR OBSERVATIONAL
CONSTRAINTS ON THE REGION OF PARAMETERS

We very roughly examine here cosmological or obser
tional constraints on the parameter region for the neu
Fermi ball. We define the parameterk52p1/3l1/6v which
satisfies

M f5k3R2, ~53!

with the Fermi ball massM f and the radiusR being given by
Eq. ~33! and Eq.~32!, respectively.

FIG. 3. The region of the scalar self-coupling constantl and the
Yukawa coupling constantG where the neutral Fermi ball is stabl
~shadowed region! or unstable~blank region! against the fragmen-
tation. The energyE2 in the figure denotes the deviation from th
leading order energy of the Fermi ball obtained within the thin-w
analysis. We see that a rather large value ofG is allowed for the
Fermi ball to be stable~see also Fig. 4 and its caption!.
8-6
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We first consider the energy density differenceL which
we have neglected so far. We know thatL should be larger
than the critical valueLc.k6/(144p2M pl

2 ) in order to avoid
the domination of the black holes made up by domain w
in the total energy density of the early universe@14#. Such a
finite L gives a volume energyEv54pLR3/3 to the false
vacuum, having an effect of destabilizing the Fermi ball.
far as the volume energy is small enough, i.e.,Ev
54pLM f

3/2/(3k9/2),E2, the Fermi ball is absolutely stable
This gives a constraint,

M f,2.931026S GeV

k D 1/3S E2

k D 2/3

GeV, ~54!

due to the condition forL to exist under the above con
straints.

We next consider the observational aspect of the neu
Fermi ball. If they are produced in the early universe a
have survived until present, they can contribute to the d
matter in the Galaxy. Let us assume here that the neu
stable Fermi ball has a sizable contribution to dark mat
We then have their fluxF,

F.
rDMu0

4pM f
;7.13105S GeV

M f
D cm22s21sr21, ~55!

whererDM;0.3 GeV cm23 is the energy density of the dar
matter in the Galaxy andu0;33107 cm s21 is the Virial
velocity of the Fermi ball. We seek for the allowed region
the Fermi ball parameters through the use of currently av
able observational data. We use in the following the res
of the experiments which searched for monopoles or he
dark matter.

In order to examine whether the Fermi ball can be
tected in terrestrial experiments, we first consider the con
tion that the neutral Fermi ball should reach the detec

FIG. 4. The allowed region~shadowed! of the scalar self-
coupling constantl and the Yukawa coupling constantG for the
Fermi ball with multifermionsC i(1< i<n) to be stable against th
fragmentation~see text!. The allowed region is illustrated forn
51, 3, and 10. The figure shows that the region extends asn in-
creases.
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passing through matter. The energy loss rate~energy loss per
path length! is given by@15,16#

dE

dx
52su2r, ~56!

wheres is the collision cross section with a nucleus in t
medium, u is the velocity of the Fermi ball, andr is the
density of the target matter. For simplicity, in the followin
we assume that the cross section is geometrically given

s5pR2. ~57!

From Eq.~56!, the velocityu decreases exponentially wit
the path length,}exp(2srx/M f). Estimating the final ve-
locity asuc;1.23104 cm s21 @16#, we obtain the condition
for the Fermi ball to reach the detector,

M f.0.13srL, ~58!

whereL is the path length. Substituting Eqs.~53! and ~57!
into Eq. ~58! yields

k.4.631022S rL

g cm22D 1/3

GeV. ~59!

We next consider the efficiency of the detectors to obse
the neutral Fermi ball. Let us examine the track detect
with mica @17# and the scintillators in the MACRO@18# and
the KEK @19# experiments. These experiments are sensi
to the neutral Fermi ball, if the energy loss per path length
large enough, q(dE/rdx).(dE/rdx)min , where
(dE/rdx)min is the detection threshold for relativisti
charged particles andq is the efficiency correction factor
This condition with Eq. ~56! gives s.1.7
310218@q21(dE/rdx)min /GeV/g cm22# cm2, that is

M f5
sk3

p
.1.43109S k

GeVD 3Fq21~dE/rdx!min

GeV/g cm22 G GeV.

~60!

For the scintillator experiments in MACRO and KEK w
takeq51 for simplicity @20#. In case of the MACRO experi-
ments, the conditions Eq.~59! and Eq.~60! with rL53.7
3105 g cm22 and q21(dE/r dx)min;3I min
;6 MeV/g cm22 @18# give k.3.3 GeV and M f.7.8
3106(k/GeV)3 GeV. The flux upper limit of F,2.5
310216 cm22s21sr21 with Eq. ~55! gives the mass lowe
limit M f.2.831021 GeV. In case of the KEK experiments
the conditions rL5103 g cm22 and q21(dE/r dx)min
;0.01I min;20 KeV/g cm22 @18# give k.0.46 GeV and
M f.2.63104(k/GeV)3 GeV. The flux bound F,3.2
310211 cm22 s21 sr21 givesM f.2.231016 GeV.

For the truck detector with mica@17# we also takeq51
for simplicity. In this case we takerL57.53105 g cm22

which is due to the fact that the mica was located at 3
deep under the earth, and q21(dE/r dx)min
;2.4 GeV/g cm22 @17#. They give k.4.2 GeV andM f
8-7
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.3.13109(k/GeV)3 GeV. The flux upper limit F,2.3
310220 cm22s21sr21 givesM f.3.131025 GeV.

Recently very low background experiments are be
done for the dark matter search@21–23#. Here, we analyze
the results of CDMS experiments, which uses a cryoge
Ge detector@21#. The condition Eq.~59! with rL52.6
3103 g cm22 givesk.1.2 GeV. The dark matter search e
periments allow such a small cross section of the cold d
matter particle scattering with the target nucleus that the
erage number of collisions in the target is less than a u
(srd/mGe;srd/AGemp,1, namely, s,2.2310223 cm2

with r55.3 g/cm3, d51 cm, andAGe;73). The experi-
mental results are roughly expressed asFs}s/M f,3
3AGe310242 cm2/GeV for M f.100 GeV, and this gives
k.3.93104 GeV.

We illustrate the allowed region ofM f andk in Fig. 5. In
this figure the condition for the stability Eq.~54! is also
shown. One can see that there still remains the param
region to be explored, especially the region ofk*105 GeV
for M f&1025 GeV and k&105 GeV for 1025 GeV&M f
&1027 GeV.

VI. CONCLUSION AND DISCUSSION

We have considered neutral Fermi balls in the thin-w
model where the domain wall thicknessdb is much smaller
than the Fermi ball radiusR. In the case where the spreadin
thicknessd f of the fermion confined in the domain wall i
negligibly small compared todb , the Fermi ball is unstable
against the fragmentation even if the finitedb is taken into
account @11#. In the present paper, we have examin
whether the Fermi ball is stable or not if the effect of t
finite d f is included.

In order to estimate the energy of the Fermi ball, we ha
expanded the fields and the Hamiltonian in the power
db /R. At each level of the perturbation we have examin
the stability against the fragmentation. We have found t
the energy correction in the next-to-leading order can st
lize the Fermi ball in the limited region of the scalar se
y,

or
he

th
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coupling constantl and the Yukawa coupling constantG, as
is shown in Fig. 3.

We have lastly given rough estimations for the allow
region of the parameters,M f and k, for the neutral Fermi
ball to have a sizable contribution to the cold dark matter
the case where the cross section of the Fermi ball scatte
with matter is of geometrical size. We have found that t
allowed region is severely restricted by cosmological or o
servational constraints, but that there still remains the reg
open to future exploration.

In the present paper, we have dealt with the Fermi bal
a semiclassical manner. The quantum corrections, such a
radiative correction coming from the scattering of the ferm
ons in the domain wall, may affect the stability of the Fer
ball. They will be discussed elsewhere.

FIG. 5. The allowed regions~blank! of the Fermi ball massM f

and the quantityk defined byk52p1/3l1/6v wherel is the scalar
self-coupling constant andv is the symmetry breaking scale. Th
upper shadowed region is excluded by the stability condition. T
other shadowed regions are excluded by the experiments MAC
@18#, KEK @19#, MICA @17#, and CDMS@21#. We takeq51 for
simplicity ~see text!.
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